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NASA TT F-11,376
THE PERTURBED GALERKIN METHOD AND THE GENERAL THEORY FOR
NON-LINEAR EQUATIONS
G.M. Vaynikko
ABSTRACT. This article deals with the application of

L.Ve Kantorovich's general theory of approximate meth-
ods for the solution of non-linear equations.

The general theory of approximate methods developed by L.V. Kantorovich /723%

[11, [2] plays a great role in linear problems. In this article an attempt
is made to construct an analogous theory for nonlinear equationms.

1. Introduction

The approximate methods considered in [1], [2] can be interpreted as
the perturbed method of Galerkin. Let us clarify this on the basis of an
example of an equation of the second order:

x=Tx + f (1.1)

where T is a continuous linear operator in the Banach space E, and the
operator I - T continousyreversible. The solutions of the following
equation are adopted as approximate solutions of (1.1):

xn=Tnxn+Pnf1‘ . ) (12)‘

where Ts is a continuous linear operator in enclosed sub-space E“fof space
E,| and Pa| is a continuou? linear operator of a projection onto the sub-
space E,’. Spaces E and Ea, and operators T and 1}‘ are related by the
conditions: ' B

1) for any zpae&kL, — , “
‘ {PnTz, — T azall < Nn uzn“ .v‘ \
2)%rsz§@ ﬂwmiswmifhEEJ that
’ W2zl < 0’ izl |
3) at a certain f, e Ea
Uf = full < ma” Ufls |
Assuming conditions

, | !
N, |Palna’, IPnlna” =0/ when 7> oo, (1.3) |

to be satisfied in (1), (2) there is proven convergence of the approximate

*)Numbers in margin indicate pagination in foreign text



sonlutions to an exact one *).
We shall write equations (1,2) as

I'4

Iy = PnTzn + S"‘x"’ +P"f’ (12 ) i
When

where' Sn=Ta—PaT! is a linear operator in subspace £n. , Sn =0, the
equation (1.2') is an (abstract) Galerkin method of solving equation (1.1);
in the general case (1.2) can naturally be called the perturbed Galerkin
method. Condition 1) signifies that 1Sn| < 1n, and together with (1.3)
this has, as a consequence, the relationship

ISull >0, when n-—> oo, (1.4)

It is not difficult to see that in view of conditions 2), 3) and (1.3) we
have (compared with remark 2 for theorem 1 below)

IT —PpTI|—>0,  [If —Pufll =0 when n—> 00, (1.5)

We can verify that conditions (1.4) and (1.5) by themselves gua-
rantee the convergence of the approximate solution to an exact one **).
This assumption, 1) - 3) and (1.3) may be replaced by less restrictive
conditions (1.4) and (1.5). This makes it possible in particular to do
away with restrictidness of projection operator P, . The necessity
for such a generalization arises, for example, when the collocation meth-
od is investigated (See (3)).

*) In [1], [2] only subspace E», is assumed to be complete and E may
be an incomplete linear standardized space. Let us note that if condi-
tions 1) - 3) have been satisfied in the case of an incomplete E, these
conditions also remain satisfied for the completion of E and operator T
which is extended with respect to continuity. Therefore, from the theor-
etical standpoint the assumptjion concerning the completeness of E does
not restrict the generality.

**) This fact can be easily proved directly. It can, however, be
obtained from theorem 3 (see below) by writing equation (1.1) in the
form z=Tz! with nonlinear operator Tza=Tz+f (in the form-
ation of theorem 3, T must be replaced by T).



The above remarks will be tasken into consideration when nonlinear
equations are investigated. The analog of approximate equation (1.2)
will be immediately given in the form of (1.2') and the convergence con-
ditions will be formulated in terms analogous to (1.4) and (1.5)

q 2. The Perturbed Galerkin Method for Nonlinear Equations

In Bonach space E let us consider equation

z=1Tz (2.1)
with a nonlinear operator T which is continuous on an open set Q c E.

Let {£.} be a sequence of closed subspace in E, and let P, be a
linear operator of projection into space E,, i.e., P,z E,| for any value
z from the domain of operator P,|and Pnz, = 2n for znesE,.'". Operator P,
can also be unbounded, and in such a case it 1s assuiied that the range of
values of T () of operator T on § is included in the domain of P, , and
that operator P,,T/is also continuous on Q.

~~
~
N
w

As approximate solution of equation (2.1) adopted are the solutions
of equations

Zy == PpT'zy - Sun ) (2.2)

(the perturbed Galerkin method), where Sn\ is a generally nonlinear opera-
tor in space E,, continuous on the setQn = QN En Equation (2.2) is considered
in En- ‘

Below will be given two proofs of convergence of the perturbed Gal-
erkin method (2.2). The first proof makes use of the concpet of the
rotation of completely continuous vector field (see (k) ), and accordingly,
operator T, P,T and S, are assumed to be completely continuous. The sec-
ond proof is based on the principle of compressed mappings, and instead of
complete continuity there is intrpduced the assumption of operator differen-
tiability.

The obtained results are transferred in the usual manner to the case
where the approximate equation is given not for subspace En, but for some
other Banach space E,, which is isomorphic to E, (see (1),(2) ).

For the sake of simplifying the formulation, we shall limit ourselves
only to equation (2.2) in subspace E, < E. Even though in the application the
exact equation and approximate equation are, as a rule, given in different
space; it is usually not difficult to write an equivalent equation in the
form of (2.1) and (2.2).

We shall henceforth everywhere adhere to the notation: I is an identity
operai:s/?r, P = [ — Py, p(z, M) is the distance of point z ek to set
McE.



13. The first Proof of Convergence

In this sectd'..ea vge”sh_gll assume that the set Q- <CE is bounded,
operator T is determlnea at, @ =QqUr and does not have at the boundary

I' the set @ of fixed points. For the sake of simplicity let us also assume
that T =TI[Qa 1is for each value of n the boundary of the set Qn =

oflE ~ in E .
n n

Let us denote by X (X _c= Q) a closed set consisting of the fixed
points of operator T in Q O(se% of solutions of equation (2.1) ). sSet X
is not empty if operator T is entirely continuous on © and the rotation
of the vector field x - Tx on I differs from zero: y(I - T3 I') # O.
Let us denote by Xn(XnC- Qn) the set of solutions of equation (2.2) in Q.

Theorem 1. Let operators T and P T be entirely continuous in the set

a=qoUTr ana operator S entirely cont’%nuous on the set © =QUT s
n n n n
and furtheremore: »

sup lPMTz]| 0,  sup [Sazall 0 when 1500, (3.1)
a8 - =e@, |
Then if y(I - T3;T) # 0, with sufficiently large values of n the set Xn
of the solutions of equation (2.2) is not empty, and L7126
sup  p(an, Xo) >0 when n— oo, (3.2)
xnexnv

Proof. By contradition, it is easy to prove the existence of such a constant
a > o such that

le—Tzl =z (zr&T) (3.3)

(recollect that X, does not contain points of T ). By virtue of the

first of the conditions of (3.1), with sufficiently large values of n
(let this be whenn =nd ), we have
(]
2
From conditions (3.3) and (3.4) it follows that wvector fields x - Tx and
X - PnTx are isonioctopic on T, and therefore

"P(“)T-Z'ng (xer‘) ) (3-)4)

I —P.T; T)y=y(I—T; T)#0  (n=nd).

Further, from the definition of the rotation of a vector field it follows
that with sufficiently large values of n (let this be when nZ=nyn > no)‘

V(I — Pul; T)==y(I —P,T; Ty)

(in the right-hand part of the equation I - PnT is regarded as an operator
in En). Therefore,

VI = PuTiTa) #£0  (n3=m).



According to (3.3) and (3.4) we obtain

o ' .
lz— P.Tx| >—2» (zeTn; nz=ny). (3.6)
By virtue of the second condition (3.1), when n=n; (Ra=n .
1Snzll <, _— 3.7
4 n

From inequatities (3.6) and (3.7) we conclude that vector fields x - PnTx
and x - P Tx-S x @&re homotopic on Tn , therefore
n n

VU =Pl —Sn; Ta)=y(I—PaT; Ty)  (n=m) |

and (see(3.5)) y(I —P.T —Sa; Ia) 0. Therefore the ocperator I - PT -5,
has in nat least one fixed point, i.e., when n>npset X; is not empty.

Let us prove relationship (3.2), Let it be given that ¢ >0, and
let us surround each point x = Xq by an open sphere with a radius not
greater than € and with the center in x , entirely contained inQ, We
shall denote the thus obtained convergifg of set X, by Xo€. It 1s clear
that in closed set ﬁ\Xo there are no fixed points of operator T. Let

us take such a number o> 0 that

e — Tzl > ae  (z€Q\Xet).

By virtue of conditions (3.1), with sufficiently large values of n (when /727
n>n, )

“-’li"'PuTx—S,.xll ?-—;—e (er,.ﬂ(ﬁ\Xoe))

Thus, when p > n, not a single point of the set Xn can be situated in
N Xedeeo, X, <X« In view of the arbitrariness of ¢ > (0 this is
equivalent to (3.2). Theorem 1 has been proven.

The proof carried out is a variation of the reasoning used for (4) in
proving the convergence of the Galerkin method.

Corrolary. Let the conditions of theorem 1 be satisfied. Then if
equation (2,1) has an isolated solution x=Q with a nonzero index, then
such values of 0.> 0 and n,, can be found, that when n> ny equation (2.2)
has in sphere |z — 0| << 6o’ _at least one solution X,. The correspondence
ey — zoll > 0] takes place when n » ®.

This confirmation we obtain from theorem 1, taking as a 'new" set @
the sphere |« |z —zll < 8y of a sufficiently small radius 0,. Let us note
that the uniqueneds of approximation x, may, with a sufficiently large
value of n, be violated in any sphere |z — z,fl << 6.

Let us point out certain insufficient conditions for the satisfaction
of the first of relationships (3.l).



Remarks: 1. Let Banach space £ <£ be continuously inserted into
E. Let operator T transfer Q@ into a subset which is compact in E', and
let projection operators Pa (n=1,2,..)| be bounded as operators from
E into E and let them tend strongly toward the operator of the insertion
E into E. Then

sup |[PMT2|+0  yhen n—>oo.
o (3.8)

The proof can be easily carried out by contradiction see (3).
2, let for every .=
[

p(Tz, Ex) <M (n=1, 2 ce)e

Let the operators P»(n=1,2,,,,) be limited in E and

(iPallns—0 ' when n— oo,

Then (3.8) takes place., (Operator T does not have to be entirely con-
tinuous,)

Actually, since Pz, =0 for :naEn, for any ¢=82 we have

1PTz) < IPWlp(Tz, En) < (14 IPal)na—0  when n— 0.

q 4. Concerning the Solubility of the Nonlinear Equations

Recollect that operator T, determined on the set is called differ-
entiable operators according to Frechet in point z e Q.| if with any suf-
ficiently small, with respect to the norm, element h & E | (such that Zo+ k€&
Q){ » the increase of T{xo-} h) — Tz can be introduced in the form of

T (20 + h)— Tzo = T" (zo) b + 0 (203 h),'! (4.1)

where T’(%0) is a linear continuous operator in E (a Frechet derivative
of operator T in point ), and llo(ze k)il /2l -0 when [A]—0.

I£f T is differentiable in every point of the segment connecting /728

points Xg and X, + h, and U is any continuous linear operator in E, then
see (2),

T (@2 + 1)— Tzo ~ UL < bl sup 7"+ 0B) = D .2

In particular, assuming U = T’(x,),, we have

ll6 (2o B) Il = T (@0 + h)— Ty — T" (zo) bl < (4.3)

< Bl sup T/ (xo -+ 0k)— T (x0) |l.
o<t



Operator T is called continuously differentiable in point x,, if it
is differentiable in every point of a certain vicinity of point x5, and
furthermore [77(z) — I"(zo) | >0 When n—s oo J

Let T and T be continuous operators on the open set QK. Let us
determine the conditions under which the solubility of one of the equa-
tions, x =Tz and z = Tx leads to the solubility of the other.

Theorem 2, Let the equation z = Tx/ have the solution & @ , and
let the following conditions be satisfied:

a) operator T is differentiable according to Frechet in certain vi-
cinity of point 3, and furthermore linear operator |— T'(%) is contin-
uously invertible;

b) at certain values of o and (8>0,0<¢<1) the inequalities
1— 1T —1 (7" — T < ‘
el @) @) =T (@I < ¢, | (4ott)
o= [~ T ()5~ TH Il <8(1—q). (4.5)

are valid.¥)

Then equation ¥ = T% has in the sphere le — 2l << 6 the unique
solution gz, The inequality

¢ <11x0—501|<——_a——-

is valid,

Proof, From equation gz iz T,jWwe subtract the equality %o = 7%, term
by term, and transform the result

T— =Tz — T3 = (Tx—-Txo)-I—(Ta,o—Txo)
[I——T’(a,o)](x-—xo)——[T.r—Ta,o——T'(a,o) (2 — %) - (T&y — T3)].

Applying to both parts, operator [I—T'(f'o)]",;’ we obtain the final re-
sult that equation ; — Tx\is equivalent to equation z = AZ, where

Az = Fo + [ — T’ (%) [Tz — T — T’ (%) (z — &o) + (T2 — TE)}

Let us show that A is the compression operator on the spherel H.r—;ou
Actually, by virtue of an analog of inequality (4.3) for operator
[1—1 — 7'(%)]*T] when |z — ol < 6{ we have
NI — T’ (%))t [Tz — T% — T’ (%) (z — <

< lle— &oll sup 117 — T/ (20)]-4 [T (%o + 0 (2 — &) ) — T’ (%)) l* (4.7)
001

*) The number ¢ is assumed to be so small that the sphere
is contained ingQ .




taking inequalities (4.4) and (4.5) into consideration, we find
Az — Zoll /”J«'—MHQ"l‘ <8¢+ 8(1—g)=25,

i.e., A transfers sphere ”x-“” = ‘5' into itself. Let :u‘ and le be
two points of sphere lz -— Fll << 8.° we have

Azy — Azy = [ — T" (30) ] [T21 — Ty — T’ (&%) (21 — 22)). |

Let us write unequality (4.2) for operator [I — T7(%)]-'T| (the role of
points -+ % and r, and operator U is played, respectively, by zy,

Xy
and 7 — T'(%)]"'T" (%0)):
M — 77 (&) -1 [Tas — Ty — T7 (%) (21 — 23) ]| << s — 2)) X
X sup [[[I =T (%) [T (x2 4 0 (%1 — x2) ) — T (%0)] Il
001
When0 < 6 <1 point 22+ 9(-’“ - 32). belongs to sphere [jx —Foll <d! and

with aid of (4.4) we find
Az, — Azl < g llzs— 2,

i.e., operator A compresses the sphere llz — %l <& |

According to the principle of compressed mappings, the equation

z = A:c,\, and along with it also equation z = 7, have in sphere |z — %l < 6

the unique (general) solution 2. We have

2o — Fo = Azo— Fo = [[ — I"(%0)]* [T20— T —
— T* (%) (2o — o) + (T% — TE0)], :

whence, using (4.7) and (4.4), we obtain

flzo — Zoll < ¢ llxo — Zoll +- @,
lzo — Foll = a — gllzo — Zoll.

The last inequalities are equivalent to estimate (4.6). Theorem 2 has
been proven.

Corollary: Let operator T be continuous on an open set Q and dif-
ferentiable according to Frechet in a certain vicinity of point z, & Q,/

/729

and furthermore let linear operator I —T’(z,). be continuously invertible.

For certain values of & and q (5> 0,0<C ¢ < 1)}, let inequalities
sup 11— T (@) (@)= T"@) I < 4. -

flx—x << ’ | (4.8)

t

a= [T =T (z) 4@ — T=) | < 8(1—19). %.9)

be valid,



Then equation x = Tx has in sphere Iz — =z, <6 this unique solu-
tion* Ty , and the estimate 1is valid,

a a

_——< Ze — X < . 4.10
TSl —al<i—, (4.10)
Actually, ¥ = z,. is the solution of equation x = ‘f;:, where /730

|

.T‘xz_—T’(x.)(x~z.)+a:. (z=9),

and it can be verified without difficulty that for the equation pair,
z =Tz and x =Tz all the conditions of theorem 2 are satisfied.

Inequality (4.10) will be used in 7 in deriving estimates of the
error of the perturbed Galerkin method. To establish the fact of con-
vergence, we shall in the next section use a somewhat cruder, but more

convenient formulation of theorem 2. Let us interchange the roles of
operators T and T.

Theorem 2', Let equation x = Tx have the solution ZEQ , and let
the following conditions be satisfied:

a) operator T is differentiable according to Fresche in a certain
vicinity of point % and furthermore linear operator I—T'(.ro) is con-
tinuous invertible,

N —T" (@)l <% (4.11)

b) for certain values of 0 and q (0 >0, 0<< ¢ < 1)/, inequalities

’ ’ q
Sup T @)= Tzl < = %.12)

1T 20 — Tzl < 3%11) %.13)

are valid,

The equation x = Tx has a unique solution in sphere [z — xoll <<

5. The Second Proof of Convergence

Theorem 3, Let operators T and P,T 'be continuous on an open set
Q — E,and let operator Si be continuous on Q, = Q(1E.. Let the equation

(2.1) have the solution Q! , and let the following conditions be
satisfied:

. —

"% In connection with the proof of the convergence of Newton's method
in (1), (2) an analogous result has been indicated under the assumption
that operator T is twice differentiable and that the second derivative is
bounted on sphere |z—z,l <.

— -
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1) 1P®zgll = 0 u [|SaPrtoll >0  when ¥ n—> %

2) the operator T is continuously differentiable according to :
Frechet in the point z, and linear operator J — J'(x,): 1s continuously
invertible;

3) operator B T is differentiable according to Frechet in a certain
vicinity ||z — o)l < ¢ of point x, (as an operator in E), and furthermore
(PnT)' (x) = PuT'(x) and for values of € > 0 such values of 7. and &

(0 < 6o < 0) will be found, that

IPT ()l < e when nZzncullz —z) < o

4) operator S, is differentiable according to Frechet at points of
intersection of sphere llz — x|l << o with E_ (as an operator in Ep), and
furthermore, for every value of ¢ > 0 such values of »’ and ¢/ (0 < o’ < 0)!
that ‘

IS (@)l <e| when 7=n’ and [z—axl <o’ (z=En).

Then such values of »n, and ¢; > 0 will be found, that the solution

x, of equation (2,1) is unique in sphere [z — zl| < b ! and when nZ==ho .
equation (2,2) has in this sphere the unique solution z,. Convergence
Iz, — zoll»0 " _ occurs when n->e<, and the bilateral estimate (c;, ¢ =
const, > 0)
¢y [|[PWzg — SpZall < llzn — 2oll << 2 || PMzo — Spzall. (5.1)
is valid. [731

Before proceeding to the proof of the theorem, let us note some con-
sequences of its conditions, which will be repeatedly used in the follow-
ing sections.

1. From condition 3) of the theorem, it follows that

IPOT (@)l >0  yhen >0 (5.2)

2. There exist such values of n;, 8 >0 and % = const,; that when
iz — xoll < 64 and # =nq , operators I -~ T'(x) and I - P T'(x) an inver-
tible-in E, and operator I—P.T(2) — 8,/ (z) is invertible in E,, and
f.g;&hﬁermore

E=T@FI<x  (lz—zl <8, (53) :
W =Pl @ <v (le—zl <6 nzm),  (54);
I —PaT7(z) =S’ (@) ] <x (lz—all <&, z€ka nz=n). |
| .
(59

Actually, the (5.3) proceeds directly from condition 2) of the theorem,

% From  [|P(Mg)—+0 it follows that P.z e, for sufficiently large
values of n.,

10



n-—r %,

and (5.4) then proceeds directly from condition 3) and (5.3)%.,) Estimate
(5.4) remains in force, if I — P,I'(z) is regarded as an operator in Ej.
Hence and from condition 4) of the theorem we obtain (5.5),.

3. For every value of ¢ > 0 there will be found such values of o,
and », that

IPaT’ (z)— PaT (m) | <& (llz— ol << 0¢; n = ne). (5.6)

Actually, in accordance with conditions 2) and 3) of the theorem, let us
select. O¢ and DY in such a manner that when |z _— z| << o, and n>=n/ we
would have

07" (@)~ T’ (@) | < —

S BT @<

€
=73’
then

IIPnT’(x)—PnT’(i‘o) | << 1P ()| + 1T (x) — T ( xo) I+

+ I1PT (zo) || < &. ' |

Proof of theorem 3. The isolation of solution x, of equation (2.1)
proceeds from the invertibility of equation J — 7'(z)| . In proving the
solubility of equation (2.2) as an intermediate step, let us carry out
the proof of this fact first for the (unperturbed) Galerkin method

zn =PnTx11. (5.7)

In contrast to equation (2,2), equation (5.7) may be studied both in sub-
space E, and in subspace E, The solutions of equation (5.7) belong to E;.

Let us show that for sufficientlv larege values of n, for equation
(5.7) the conditions of theorem 2’ (T = P.T) are satisfied, Condition a)
is satisfied in view of condition 3) of theorem 3 and inequality (5.4) for
x = %o. Let us show that condition b) is also satisfied., For this purpose,
let these be given to a certain ¢(0 <g <{), and then let these be any
sufficiently small value of o > 0, so that with sufficlently large values
of n there would occur the inequality (see (5. 6))

sup ([P () — Pal’ (2o) | <
llx—xoll=<8

which corresponds to inequality (4.12). Inequality (4.13) 1is also valid
for sufficiently large values of n, because according to condition 1) of
theorem 3

720 — Ta|l == [POTzylf = [|Pvze >0 when - oo,

* In (5.4) the constant ¥ will, generally speaking, be greater, and
the constant 4, will be smaller than in (5.3), but after (5.4) has already
been determined, x can be increased and 03 can be decreased in (5.3) in
such a manner that these constants would be equal in (5.3) and (5.4). An
analogous remark pertains to (5.5).

11
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Thus, starting with a certain n-—-no, all conditions of theorem 2' are
satisfied and, consequently in sphere ux—~xdl<15 there exists the
unique solution zn 0 of equation (5. 7). Since the value6>0 in our con-
siderations was afﬁitrarily small, the convergence u;n __1gﬁ2;0’ when

C e is simultaneously proved.

In order to determine the solubility of equation (2.2), let us now
apply theorem 2' to equations (5.7) and (2.2). The first of these equa-
tions plays the role of an "exact'" equation, and the second - plays the
role of an "approximate" equation z == T'z; both equations are examined in
the space Ep., Since zn.’—2Zq when n— o0, with sufficiently large values
of n condition a) is satisfied:

W = PuT’ (20011 < .

Let these again be given some value of q(0-<:q<:1)’and let us then
take any such sufficiently small value of § > 0/, that with sufficiently
large values of n we would have

sup _ |1Pn"(2) = Pul"(22) Il < gq; ;

llx—, 1<
This is possible in view of (5.6) and the convergence llza® — Zoll = 0.
Decreasing 1f necessary, the value o we can in view of condition 4) of
theorem 3 consider that with sufficiently 1arge values of n is also valid.

sup INSEEA <-—— ‘
fle—a, 18 3x

To sum up, we obtain this fact that with sufficiently large values of n,
the analog of inequality (4.12),

sup [[PnT'(2)+ Sa (@)~ [PaT” (2a8) + S’ (z9)] | < L . (5.8)
le —x! ||<6 LJ

is wvalid,
Finally, the analog of inequality (4.13)

ISuzat) < 20— 9) (5.9)
[Y3 |
is also valid with sufficiently large values of n), because from conditions
1) and 4) of the theorem it follows that

uSnxn““ < llsnpnxoll + "Snzno— Snpnl‘oll < "S.,.P,,.‘to“ +
+ sup 83/ (200 -+ 0a (Pato — 229 ) || |22° — Py2oll - 0 when n— oo,
0<0 .

<

Thus all the conditions of the analog of theorem 2' are satisfied /733
and hence the conclusion drawn that equation (2.2) has, when nz=1s in a
sphere |z —2,°l <& , the unique;solution X,. Since the value 6:>(l could
in our considerations be arbitrarlly small, and [iza®— x>0 when n- oo,
it also follows that li#n —%ll >0/ whenn-»co, and n will be the only
solution of equation (2.2), also in a sphere [x—a| << 8. . The value O
may be chosen so small, that in the indicated spnere there will be no other
solution of equation (2.1) except X,.

12



Let us determine estimate (5,1), From equality Zn = Pulzn 4 Snn
subtract ) = Tz and transform the result (see designations (4.1)).

XTp — Ty = PnT$n —_ PnTJ'Jo -l- Sn:cn ""P(n).’l?o =
= P, T’ (xo) (.'L‘n — .’Co) + Lo (1«'0; Tp— .‘to) + S,,x,, — Pm)z,,

or, denoting y, = P"z)— SnZn,

[ — Pall” (20)} (@ — 21) = Puo> (0, &n = Z0) = Yn.

(5.10)
Using formula (4.3) for operator P, 7, we find
WPwo (xai 20 =20 oy DT (w0 40 (80 — 20)) — Pul” ()| <
flzn — xoll 0<<0<t B
if p=n.and |z, —xll <0  (see 5.6))., Because lzn —zll >0  when n— oo,

the last inequality will be satisfied for sufficiently large values of n,
and in view of the arbitrariness of ¢

”Pn(ﬂ (-7"0; Ty — xO) f

—>O)when > o0, (5,11)
”mn — ol | |

Since norms [/ — P,7"(x))l| and ||[I — /.7 (td T " Of;zrnﬂ are bounded in
their set (see (5.2) and (5.4)), it follows from (5.10) and (5.11) that

(1= en) U — PaT" (20) 1 yall < llzn — 20ll < (5.12)
< (0 el —Pal (@) ] i | )
where en—>0 when »n-» . Estimate (5.1) proceeds from (5.12).
Theorem 3 is completely proven.

Let us supplement the assertions of theorem 3 by a series of remarks.

Remarks. 1, Under the conditions of theorem 3 the rate of convergence
is characterized by the relationship

flzn — 2ol = (1 4 va)ll (I — T (zo)} -1 (PMzg — Snzn)ll (ya—0 n—» o).

This result proceeds from (5.12) and (5.2).
The next remark will be used in 1 8.

2, Under the conditions of theorem 3 the following bilateral esti-
mate is valid:

ellPaTxo — ToPosoll < lzn — Pazll < czllPaT2e — TaPazoll (5.13)

where f"==PnT4—Sm

13



For the sake of proof let us subtract from equality #» = PaTz,+ Sz,
the equality Paze == PuTPuzy+ (PnTzo— PnTPaz), term by term., By making simple
transformations, we obtain S

[1 —[)nTl(Pan)]—‘(rn "'Pnzo) = —2n 'l" an(ano; In '—-Pn.x;))\ ll (5. 14)

where ; — p,Tzy— PuTPnzo— Snz.. Analogously to (5.,11) it is determined that

"an(l’" Loy In '—Pn.‘to)“ -0 ' When B> oo,

lzn — Pazoll !
Jointly with (5.14) this has as a consequence the estimate /734
liznll < llzn — Puzoll < ¢"liznll. B
But Zp = (PATIO‘_‘ T,.P,,l‘o) + (S"P,..?‘o —S,,.‘l:,,)“‘ and (5.13l)
“Snpnzo —Sululléﬂzn —PnIo" sup "Sn,(xn) -—S"’(.‘tn + en(Pnzo - zn))"-’=
0<Op<t

= o(llzn — Pazil),

-

therefore (5.13') is equivalent to (5.13).
3. Under the conditions of theorem 3 is valid the estimate (c = const)
12 — 2n®l < clSazall, (5.15)

where x, and x,° are the solutions of equations (2,2) and (5.7), respec-
tively.

Actually, the existence and uniqueness of solutions x, and x,? has
been determined in the proof of theorem 3; it was noted that ||S,z.% - Owhen
R oo To derive at estimate (5.15) let us write inequality (5.9) with
the smallest possible constant ¢ i.e., we shall assume

=06, =—

%
HS,.-tn"ll
q

and thereby shall convert inequality (5.9) into an equality. It is clear
that in equality (5.8) remains also in force when §:=26... Again applying
the already used analog of theorem 2', we conclude that with sufficiently
large values of n equation (2.2) has in the sphere lz—=z,% <¢, a unique
solution. By virtue of the uniqueness in the sphere lzn.—=z,.% <6, (see
theorem 3), this solution coincides with x,. Consequently llz — zoll < &

and this is estimate (5.15)

The following propositions are proved by means of analogous consid-
eratiomns.

4. Let the conditions of theorem 3 be satisfied when §, = 8.0 (i=1, 2).|
Then '

). ) (1) (2) . ) (1) (2) [¢}] @), @
“I,. —Zn ||S C“(S” _Sn )In Ily ".t,. '_znll< CIHS,. '_‘Sn )In “~

14



where z.( is the solution of equation (2.2) when S, =80 (i=12).

Remarks 3 and 4 allow investigation of the stability of various ap-

proximate methods with respect to compgratively minor errors in the equa-
tion system of the corresponding methods,

In proving estimate (5.1), we have essentially determined the follow-
ing result.

Lemma 1. Let x, and x, be the solutions, respectlvely, of equations
(2.1) and (2,2) chrespondingly lan — 2!l = 0'when n— o, @ Let the operators
P.T (n _1 2,...) be differentiable according to Frechet in point x,

P, T (x4 h) — PpTxo = (P T) (zo) e + @n(Z0; R},
and furthermore:

1 ""’"("";""““"‘”)"—»olwhen > co;
Iz — o] |

2) operators I — (P,.T)'(Jt'o)\z are continuously invertible
and norms

M = @aT) @) 1 = (Pal) @)1 (3 my) |

are bounded in the set.
Then estimate (5.1) is wvalid.

Let us note that condition 1) is definitely satisfied in the tendency
flwn(zo; Bl /Ik) —~0; when |hll--~0 is uniform with respect to n.

The theorem 3 can be modified in several ways. We shall not devote /735
time to this question. Let us merely note some more particular assertions
which, however, are more useful for applicationms.

Theorem 4, Let operator T be continuous on open set £ cEl equation
(2.1) have the solution z,=Q and the following conditions be satisfied:

1) operator T is continuously differentiable according to Frechet in
point X, and linear operator [ — 7’(x)| 1is continuous invertible;

2) for any value of X from a vicinity llz — 2ol <06 point x, and for
value of ;e Eithe inequality

p(T"(2)z, Ex) << my 2 (n=1,2,...);

is satisfied;

s
3) operators P, (rn =1,2,...). are bounded in E, and furthermore

IPallna’ =0, IPMzoll 0! when 7> o0 %) |

*) For the fulfillment of relation |Pmzl—0 it is sufficient that p(, E,)|
IPali—0!when n—oo.!

15



4) operators S are continuous and differentiable according to
Frechet in the setQ, = QNE,, Jand furthermore

sup lISazll -0, sup 1S/ (2)l-0 ' yhen 7> oo, (5.16)

xeR,, xenn

l

Then the conditions of theorem 3 are satisfied,

Verification is only required for condition 3) of theorem 3, Using
conditions 2) and 3) of the theorem undergoing proof, we obtain when

lr—-z) <o and anysez,

WPT? (z)2ll << LPO] p(T7 ()2, En) << (14 [Pall) ma” lizll,
whence |

PO (@) S (4 + IPul)na’ =0 when  r—>o0 (o — g < o).

Thus condition 3) of theorem 4) is satisfied. .

e e e

Theorem 5. Let operator T be entirely continuous on open set Q cE
into a Banach space E' E (thus T is also entirely continuous as an opera-
tor in E), and projection operators P, as operators from E' into E are
bounded and tend strongly toward the operator of the insertions of E' into
E. Let equation (2.1) have the solutiononand let operator T be contin-
uously differentiable according to Frechet in point x, as an operator from
E in E' (in just the same manner as an operator in E), and furthermore let
the homogeneous equation h = T(x,)h have on the trivial solution h = 0.
Finally, let operators Sp (n = 1,2, ...) be continuous and differentiable
according to Frechet (as operators in Ep) on the set ¥, = QnE,.f and let
conditions (5.16) be satisfied,

Then the conditions of theorem 3 are satisfied.

Actually, o =-j”7:Io,E E'vg and according to the condition of the theorem,
|P™zll—>0 | for any value of zEE’]. Therefore IIP("’xo||—>O{, and condition 1)
of theorem 3 is satisfied. Furthermore, the Frechet derivative of an en-
torely continuous operator is an entirely continuous linear operator (see
4)). Thus T'(x0) is entirely continuous from E into E', and since Pp—™ P
strongly (P is the insertion operator of E' in E), it follows that
||P(")1"(.zo)ll—>0“ﬁ“7hen n-»o, We obtain

NPT () ff AP T () — T (o) | - | POITY (o) .
There P(™)T'(x) is considered as an operator in E, P(?) = P - Pn 1s consid-

ered as an operator from E' into E, and T'(x) is considered as an operator
from E into E', According to the Banach - Steinhaus theorem norms, |P™)|!

I~
~
W
(o)}

(n = 1.2 ...) are bounded in the sets, and according to the condition of theor-

em " 77(z) — I"(x0)ll >0 when |z —zo|>0.| Therefore, for any value of ¢ > 0,
o » 0 and ng can’be pointgd out, such that

' ‘ !
1IP0I (2)| <& when p=n, and lz — 2ol < 0e.
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Thus, condition 3) of theorem 2 is satisfied; the remaining conditions of
Theorem 2 are satisfied in an obvious manner.

Theorem 5 is valid, in particular, when E' = E; operators Pp in this
case must tend strongly toward the single operator.

let us finally point out a result, close to theorem 5,

which follows from the corollary and remark 1 to theorem 1 and from lemma
10

Theorem 5', Let operator T be entirely continuous on an open set

Qc £as an operator from E into the Banach space E' E, continuously in-
serted into E, and let projection operators P,, as operators from E' with
E, be bounded and tend strongly toward the operator of this insertion of
E' into E. Let equation (2.1) have the solution zp& Q; and let operator
T be differentiable according to Frechet in point X, as an operator from
E into E', the homogeneous equation h = T'(x,)h having only a trivial so-
lution¥*,) Finally let operators S, (n =1, 2, . . .) be entirely contin-
uous in the set Q = Q L, (as operators in Ep), with

sup uS'nx" -0 when n—> .

=<9,

Then such values of ng and 6 >0, will be found, that the solution of
equation (2.1) is unique in sphere |y 1)l << 8, and when n > n, equations
(2.2) has in this sphere at least one solution xp. Convergence [z, — zo| -0
occurs when n— o and evaluation (5.1) is valid.

The uniqueness of approximation xp under the conditions of theorem 5'
can be violated.

An analogous modification may be established for theorem 4.
16 . Combination with the Newton Method

Although equation (2.2) is solved more simply than is the initial
equation (2.1), nevertheless the direct solution of this nonlinear equation
can lead to great difficulties. Therefore it is of interest to consider
the question of an approximate solution of equations (2.) themselves., In
this section let us point out the possibility of utilizing Newton's method
for this purpose. The utilization of Newton's method not to the initial
equation (2.1) but to equations (2,2) is advantageous with respect to /1737
numerical realization. —

For the duration of this section we assume that :

EicE,c...cE,c....

* From this it follows (see (4)) that Xg is an isolated solution of non-
zero index. Let us note, that in distinction from theorem 5, we now do not
assume this continuous differenciability of operator T.
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We consider operators T, PpT, and Sp to be differentiable (it is sufficient
to satisfy the condition of theorem 3), To abbreviate the notation, let

us introduce the designation Tn = P,T + S,. Operators Ty and T,'(x) (z& Ey)!
act in subspace Ep.

The simplest scheme of applying Newton's method to the solution of
equations (2,2) consists in the following. At some value of n = no, there
exists and initial approximation Xpg,0 of the solution xpny of equation (2.2)
Let us improve this initial approximation by performing in (2.2) one itera-
tion according to Newton's method (see 2)). The obtained element xpn,, 1, is
taken as the initial approximation zp4(¢ , of the solution of equation (2.2)
when n = no + 1, etc.:

Znd=2Tpno— [I —_ Tn' (xn'o) ]“(xn'o -— T".‘Iln.o)]

(Tng = Tat10; n=no, no+1,...).

It would be natural to consider a more general iteration scheme, performing

for each wvalue of n, generally speaking. several iterations¥):
Zn, bt = Tngp — [ — Tn’ (Tnp) ] (Znp — TyZnp) \
o ST (64) |
E=0,...,1n; =20 Za, (p+t = Tntr,0; 0= Mg, no+1,...).
Theorem 6, let the conditions of theorem 3 be satisfied.

Then if the initial value of n = ny is sufficiently large, and the
initial approximation xpny,0 is sufficiently close to solution xp, of equa-
tion (2.2) when n = ng, then iteration scheme (6.1) is realizable and
I na, 0 — Zoll = 0 when n—>® (x4 is the solution of equation (2.1)).

Proof. By virtue of (5.5) and convergence [jz, — zo|-»( there exists
a sufficiently small value of § > 0, such that

{

I—T/@FI<x  (e—zl<b, z€E; n=m). (6.2)
If necessary, by decreasing ' ¢ and increasing no, we can obtain result that

sup 7w’ (&)= T () | < — (6.3)
e <28 : U b

Increasing n, once again if necessary, we shall consider that

: §
znp — Zmll < T when m >nzn, (6.4)

* At some values of n, it is possible not to iterate at all, taking
*n, Iny1' as an approximation of Znimire (m>0). To formally coordinate
this jump with (6.1), it is necessary to exclude from sequence {E,} all
subspaces between E, and Enimiiy i.e., to redesignate Eaim+; with En+j
and analogously With Te4m+i and Xn+m+i, k (f=1,2, ...).

18



This value no we shall take as the initial one in iteration scheme (6.1).
Let us show that if the initial approximation xno,O belongs to sphere

lx — xnll ;\:Jl@, then iteration scheme (6.1) is realizable and leads to the
‘converging process.

Let us assume that for certain values of n and & (n=ny, 0 <k < ly) ‘_

/738

the approximation & | is defined and Il#s,n — zall << § (this condition is satis-

f1ed, in partlcular by the initial approximation xno,O) Then operator

I — T/ (zn, h) is invertible (see 6.2)) and, consequently, approximation
Zn,n4t exists., Preceeding from (6.1) and using the equality xp = Tpxp, we
find
Inptt — Tp = T,k — Tn —— [I - Tn, (xn,k) ]—‘(xn,h - T'nzn,h) = ‘
= — [ = To' (@ p) I [TnZn — TnZnp "'"_Tﬂ, (:‘""‘,) (@n = x"'h)]I)

Hence, taking into account (6.2) and inequality (4.3) for operator T, we
obtain

"xn, rH— Zall <% “xn. r— Zall sup 7, (.'I}) — T (xn. h) "- ‘J
. - le—x". YIS E ’

When ||z — Zn,tll <O we havellz —zll < 255and, in view of (6.3)

sup  NTa’ (@)= To/ (@n,u)l < sup [TH'(2)—T '(xn)ll+.

lx—2 n h"<6 ||x—x <26
' 1
+I‘Tn'(xn) — Tq'(zy, h)“ +—4—'y= EC
consequently 1 !
"xn,h«}-i"-xn"<‘2"‘l|tn,h—"xn”\i—6. (6-5)

We have convinced outselves, in particular, that z, x4t also belongs to
sphere [lz — 2.l < 6 ; consequently, with a fixed vaiue of n it is possible
to perform any number of iterations (6.1) with respect to k. These we
shall have

4 \laH {1 !

lznin—aml <(5) 8<78

which, joint with (6.4) yields, (recollect that Zn, i+ = Zaii,o)

| Zags,0— Zags | << l 20, 1,4~ Zn "7+' | 2n — Zny || < 6. (6.6)

Thus, Za4t,0 enters into sphereﬂx——x”i\\é&and, as a consequence of induction,

iterations (6.1) are realization for all values of n » n,.

Let us prove thatl|zn,o— Zoll~*0 when n— ®.\ According to what has been
proven, we have (see (6.5) and (6.6)).

, ’ |
l2j0—2z;ll < " zi—ziy |l 4 Y I 20— 250l (j > no)e.
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Iterating this estimate with respect to j, we find

1 ¥

€
Il:cmm.o-—zn.mllsiﬁ-i— 2m_2+...+ +"”_L_M |

when ' . ;
8j = l[Zny4j — Tnptj—tl >0 when j—> oo.i
It can easily be seen that from lim e, = 0 it follows that /739
. & €2 :
i‘_ﬁ( g s o o) =0,
and in our case this signifies thatlizs,0— ZslP0 when n— o0}  Since

flzn — xoll >0 when n—> o0, it also follows that|x,, ¢ — 2,[>0 when n-—- oo,
Theorem 6 has been proven.

It is possible to combine (2.2) with the modified Newton method in
various ways. The theorem 6 and its proof can be transferred almost word
for word to the iteration scheme:

ZTn, -4t = Tpp — [I — T (xn,o)]_’ (xn,h — Tnxn,h)
(k==0,.... 0L, =0 zp, ta+1 = Tngr0;. n=no,no+1,...). /

Here operator 1 - Tn'(x) is inverted at each value of n only in the one
point x,,0, and several iterations are performed with respect to k. Of
great interest are ineration schemes in which operator I - Tn'(x) 1s in-
verted only for an initial value of n = ny, since as n increases, the dif-
ficulty of inverting this operator rapidly increases. Iet us note some

results in this direction; The proofs are analogous to the proof of
theorem 6.

Theorem 6, Let the conditions of theorem 3 be satisfied.

Then if the initial value of ng is sufficiently large, and the initial
approximation xp,;0 is sufficiently close to solution xn, of the equation

(2.2) when n = ny, then the iteration scheme

Tkt = Tnk— I‘O(xn.k - Tnx‘n,h)
. —_ 1 |
(k = O, cany I, ln = O; TnlpH = Tail0y n == N, Ny + 3o ‘) ;

is realizable and leads to a convergent process (i.e., ||z, 0 — 2ol > O'when
n -~ o) in any of the following three cases:

1) To= [I—PupT (2, 0) ]

2) To=[I — Pn,T"(2n,0) -—-Sn,, (zm, o)Pn.]~!, operator P, is bounded in E and

IPnllsn’— 0 when n——>-oo- where sn’ —-Sug llSn’(z)N;*
=9,

3) To=[I — T/ (2x, o)Pm] operators Pp are bounded in E and
tend strongly toward a single operator, |’ (z0) P™| - Owhen n—> .|
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Great interest is afforded by effective conditions for the initial
value of ng and Xng»0» which guarantee the convergence of the various

iteration schemes. With definite assumptions about the smoothness of
operators T and Ty, such conditions may be derived on the basis of the
results of (5).

7. A posteriori estimate of error

The basis in the determination of a posteriori error estimates 1is the
corollary of theorem 2. Let us note that if the conditions of theorem 3
are satisfied, then this corollary permits us in principle to obtain asymp-
tomatically precise estimates for norms Hxn——zﬂh\ i.e., such estimates

lzn — zoll < Bny | thatliza — ol / Bn—1 when n—o0. Actually, the norms

MI—-17 (z,.ﬂvi (n > n1) under the conditions of theorem 3 are bounded as
a set (see 5. 3)) and, by assigning an arbitrarily small value to ¢(0 < g <<1),
1t is possible to find such values of ¢ > 0 and n that values x,.‘.xn.and
n > inequalities (4.8) and (4.9) hold true, an together with them esti-
mate %4 10) also holds true, In view of arbitrariness of q, this signifies
that estimate (4.10) is asymptomatically precise.

The practical application of estimate (4.10) is possible 1f the esti-
mate of the norm |[[/ — 7"(x,)]![l, is known. Estimation of this norm repre-
sents, generally speaking, a difficult problem. One possible, and the most
natural way of overcoming this difficulty consists in reducing this problem
to the more simple problem of estimating norm ||[I — PaT"(zn) — Sa'(za)] " 8 £,y
the latter norm can frequently be estimated in the process of finding solu-
tion x, of equation (2.2)

Lemma 2, Let the operators T, P,T and Sp be differentiable in point

z,.EQq, (PnT) (z.)=PaT'(2.), operator I - PuT'(x.) - S,'(x%x) being invertible
in Ey,

NI — Pal’(z.) — Sa'(x.) ] 7 << %

(7.1)
Then if
¢’ = (14 %a [PaT’ () ) IPOT’ (2) || 4 % 18" (z) Il <1, \ (7.2)
it follows that operator I - T' (x%) is invertible in E and
ll[l—T'(x.)]“ll < 1+7‘n i PnT'(xo)". (7.3)

i—¢q

* An analogous assertion may be obtained by applying theorem 4 (1,XIV)
from (2), if operator I -~ T!'(x%) possesses the following property: from
the existance of a left-hand inverse it follows that there exists a bilat-
eral inverse.

£3
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Proof*) of the lemma is based upon the following simple facts (see
(2)): if A is a linear invertible operator in Banach space F, and linear
operator B satisfies the condition [IBil l4- <1,/ then operator A + B
also invertible and ‘

pay

1—IBllA—] "

I(4+B)~] <

Applying this proposition when F = Ep, A = T - PoT' (x%), B = S,' (xx), we
obtain by virtue of conditions (7.1) and (7.2) the result that operator
I - PnT'(x%) is invertible in E, and

_ — ¢ — *n -
=Pl @l s, Sy S/ (@)l (7.4)

We have

= PaT (@) = L+ ([ = PaT' (@) PA T (2.). (7.5)

The operator in the right-hand part of (7,5) makes sense for any value of
xe<E, since before [I - P,T!(x%)] =1 stands the operator P, of projection
into En, Direct calculations show that the operator in the right-hand part
of (7.5) is the inverse of I - P,T'(x%) in the entire space E, Thus, op-

erator I - P,T'(x%) is invertible in E, and by virtue of (7.4) and (7.5)

I PaT (@) Al PaT (2]
1= PaT (@01 b S 4 25 550, STowlS @l | (7.6

Applying the assertion formulated at the beginning of the proof of the /74

lemma, when F = E, A = I = P,T'(xx), B = =P(™)T' (x«) by virtue of condi-
tions (7.6) and (7.2) we arrive at estimate (7.3), Lemma 2 has been proven,

Theorem 7., Let operator T, P,T and Sp be differentiable according to

Frechet in a vicinity*) of point n EQM! operator I— Pp1"(&n) — Sa’(&n)’
being continuously invertible in Ej. Let

% = [[[I — PpT"(&n) — Sa’(Za) ]l (7.7
and
o' = (14 sallPal’ (Ea) 1) IPOT (Fn) | 4 #allSa” (Fa) <t
and for certain values of §, and "gn (On >'0,- 0 ¢n < i) the inequalities
l

swp T (@) — T (IS 2 | (7.8)
ez (<8 S ey )

*) It is sufficient for P,T and S, to be differentiable only in the
point ¥, .Sy as an operator in Ep, and for PhT to be differentiable as an
operator in E, (PnT)>(x..) = Ppl"(%,).

*%) It is assumed that sphere HX XnH <<5n is contained 1n,§2}.'
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Sn(l—gn) (7.9)

|, — T2, | < a

. M . N . nnl . .

where : : : o
s A% I PaT (@)

SRS {— qnl : o

thn

are satisfied,

Then equation (2.1) has the solution z, & ¢ and the error estimate

-an . . a d 10)
— <2l < .
Adgn " 0”'\ 1—gn’
where
@n = {1 = T7(Za) ] 1(En — TEn) | < 0’ % — TEll. | (7.11)
iS Validc

If conditions of theorem 3 are satisfied and/¥n ——xoll—-*Othen n—> 0,/
then such values q,, which satisfy the given conditions, can be so selected

that qp — 0 when n — oo and the estimate (7.10) will be asymptomatically
exact,

Proof, The solubility of equation (2.1l), estimate (7.10), and ine-
quality (7.11) for an proceed directly from the corollary of Theorem 2 and
from lemma 2, 1If the conditions of theorem 3 are satisfied and I%n — Zol 0.1
the norms (7.7) are bounded as a set (see (5.5)). Using condition 3) and
4) of theorem 3, we become convinced that g,”->0 when n-—>oe and conse-
quently, values %, are also bounded as a set. Let us take an arbitrarily
sinale number q >0, By virtue of correlationship |z, — zo]l > 0, & — T%nll = 0
and condition 2) of theorem 3, there will also be found such values of
$§>0 and ng, that inequalities (7.8) and (7.9) will occur when §, = §,
qn = q and n >ng. And this means that q, and 6n may, in (7.8) and (7,9)
be also related that qn —0 when n > o, Theorem 7 is proven,

8. Application to integral equations. /742

Let us consider the nonlinear integral equation
b

s(ty= § K(t,s,2(s))ds

a

(8.1)

with a continuous kernel K(t, s, u). Proceeding from the quadrature form-

ula
n

b
{2(9)ds= Romi(sim)+Ra(s) (@S0 <o <... <Sna<Sb), (8.2)
'3 j=t

We shall instead of solution xo(t) of the equation (8.1), seek its value
in the points of interpolation sj».\. We determine approximate values

tjn &~ Zo(sim) equation from the system of
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n .
Ein= Z ik (Siny SinEin) (i=1,...,n). (8.3)
=t

This system is obtained from (8,1) 1f the integral of K(t, s, x(s)) is re-
placed in accordance with quadrature formula (8.2) (in which the residual

term R,(z) is disregarded), and then if to variable t are successively
glven the values Sjn +:+> Spp-

Theorem 8, Let the coefficlents @n; (j = 1, ...,n) of quadrature
formula (8.2) be positive, for each value of n, and let quadrature process
(8.2) -converge, i.,e., for any function z(s) which is continuous on segment
[a, b]' let the relationship

»

b
Ra(2)= Sz(s)ds—-ggiaﬁﬁ(ﬁn)'*o when n-—-o0, (8.4)
a = >

be satisfied,

Then 1if equation (8.1) has an 1solated solution xo(t) with a nonzero
index and kernmel K(t, s, u) is continuous for a set of variagbles in the
domain

a<t, s<b

v &) —0<u<<a(s) +6  (6>0), (8.5)

then with sufficiently large values of n equation system (8,3) has the so-
Lution §i,,..., L.

‘2.2‘” 155"""%(31n)|-—>0‘ when n-—oo. (8.6)

If in domain (8,5) there exists a continuous partial derivative
J(t, s, u)/ u and the linear integral equation
b
' 0K (t,5,70(s))
o \ N2 TON B (s)ds
h(t) §. ™ (s) (8.7)
has only the trivial solution j(t) =0%*, then the solution of system
(8.3) is locally unique: such a value §,> 0, independent of n, 1s found
with sufficiently large values of that n system (8.3) has a single solution
which satisfies the condition /743

max [, —
’;J’Qn lg]n Zo(sjn) | << 6.

The rate of convergence ic claracterized by the inequalities (e1, €2 = const > 0)

\
'y <Inaxl€in‘—x0(3;ju) |< Cz?'m‘ (8.8)
1<jsn \

* From this it already follows that the index of solution xq(t) it
differs from zero,
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where

r'n""'_—ﬂlilrlax an (Zin) l. Zin (3) =K(s,~n,s, xo(s)). (809)

1Kisin

Several same complements and generalizations are indicated in the con-
cluding part of the section.

Let us preface the proof of the theorem with one auxiliary result.
Let us adopt the prepositions of the theorem concerning the positiveness
of a;» jand convergence of quadrature process (8,2). When z(s) = 1, 1t fol-
lows trom (8.4) that

% v
Z @n = (b — a)+ yn, Yn—-0 when p-»o0.

Ji=1
b—a |
Let Bjr;. = b_a+'?najn \ and .
Vin=0m—fm (=1...,n)., (8.10)

u |
It is obvious that fjn >40, Zﬁ)’n':,l"lehen n—>00  gnd
J=1
n

2 [¥inl = [va >0 (8.11)

J==1
(all values of vin) have the same sign as yn),

Let us divide segment [a, b’ by points

g ' I
.a’ia+ﬁln,a+ﬁln'l‘ﬁz;;,.-.,_a-’-z ﬁ,,‘: b !

j=t
into n nonintersecting intervals

Tn=[0,04B1n), Jon=1[a+Bin, a+ Bint Pan),...,
J'nn= [b"'ﬁnn, b]-

. I
Let us introduce subjects Dia < [a, 8] (j=1,...,n)] . . according to the
following rule. If sjmeljp, (j=1,...,n), then we simply assume
¢ Din=1J;mn (=1,...,n).} . In the contrary case we transfer point sjn to
jjn'- ! )

. n X
Djn-=(]jn\‘Ufin)Usin (]"""-':’1;---177')E

(in this notation sjn is regarded as a one-element set consisting of the
number sjn), It is clear that

n
Sin € D,‘M U D,‘n = [a, b], Din nDjn"= 1] when i~ j,

mesDjn =mestjn=Bjn  (j=1,...,n).
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Our purpose is to show that the diameter of subset Djn tend toward zero:

dn== max sup |s'—s"|>0 when . _
1<j<n shevED (8.13)

Relationship (8.13) can be violated for two reasons: either the lengths
of intervals Jjn do tend toward zero when n —>00, or some points sjn are
situated far from the corresponding values of Jin., Let us show that in

both cases quadrature process (8.2) does not converge, in spite of the
condition,

The length of interval Jjn is equal to jn, and in the first case such
a sequence fj;ngs can be found that

Bign, =0 (B=142,), (8.14)

where N is a positive constant, Switching, if necessary, to a' subsequence,

one can be considered that the corresponding sequence of points of inter-
polation converges:

swu»&EMMiWMnn+w-

For a function¥*) z(s) which is continuous on [a,b]", equal to 1 when
|s — so] < /4. equal to Q when n/4 < |s—s| <4/2, and linear when

- [s—so| =n//2, we nave
b _ \
§ 2(s)ds = ¥n.! (8.15)
e J

On the other hand, with sufficiently large values of k}the point Sjn;  gets

into segment |s — | << /4,  in which z(s) = 1, therefore

LY

Dtin, 2(n,) = Giyn, 3
j=1 S

using conditions (8.11) and (8.14) we get with large values of k
Ny

N
'Zajnhz(sjnh)> Bihﬂh'_'g'? /sT]ll
=1 . L - B

Comparing this with (8.15), we come to the conclusion, that quarantine
process (8.2) does not converge for the constructed function,

o ni]  of points
In the second case, there can be found a sequence sj ay

of interpolation, the distance from which to the corresponding intervals
Jjk nk exceeds a number n > 0. Proceeding, if necessarz, to a s:Zseq:engi,

; ituated on the same side of cor-
let us consider that every point sj, n»,/ is 8 £
r:sponding value of Jjn. ' (for the sake of definitengss, on the giihs gand
side) and that the right-hand ends of intervals ]5kﬂf‘tend towar
to a certain limit SAEE[a,bLT

% Here is investigated a case where %0 & (a, m;‘the number n >h0 ﬁay
then be considered so small that s, enters into 4, 8] together wit t)eis
vicinity (ss—%i %+u). In a case where s, = a or sg = b, function z (s
constructed analogously,
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iK
: !
The right«hand end of interval thnh’; has this form of a+;2:ﬂ;,.h.s Therefore /745
i j==i ;
DB, > si—alwhen koo
j=1 —

and in view of (8.1l1), also \
Ja !
Zaj”k —>8§5—a iWhen k —- co. (8. 16)
=t

For a continuous function z(s), equal to 1 whenao <<s<s;, Oequal to O when
si-+n/2<<s<<b and linear when s <s << s1-+1/2, we have
5 . ,

S z(s)ds = (Sa—-a)+—4‘- (8.17)
a
On the other hand,
L T ho ny )
D0 g sin )< Do, 4+ D 0n,zlsin,)-
j=t ' j=1 J=3,H

With sufficiently large values of k, the second sum in the right-hand part
of the inequality vanishes. Actually, since point sjn; 1s located to the
right of Jjx» x at a distance of >17,and the right-hand ends Jj;n; tend
toward si, it follows that s,-ga;f>'s1+n/2\with large values of k.{ and
MOTEOVEr Sjn;, > Sjjp nj—> s|+n/2fwhen j>jx! and the same values of k, i.e,,
sink gets into the domain where z(s) = 0, Thus, with large values of k we
have

n, Iy
D tn, 2(8in, ) < D) G,
’ j=1 v: J=1

Comparing this with (8.16) and (8.17), we see that quadrature process .
(8.2) does not converge for the constructed function,

The proof of relationship (8.13) is completed.
Proof of theorem 8, We shall regard equation (8,1) as operator equa-

tion (2.1) in Banach space E of functions |zll= sup |z(s)} bounded and
measured on segment [a, b]l . o<s<b ,

The continuity of kernel K(t, s, u) i domain (8,5) has a as a consequence
the complete continuity of operator

S
Tx=S K(t,s,z(s))ds
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on sphere (e — zoll < 8) as an operator from space E into space C of
functions that are continuous on [a, b]. Moreover, T is completely contin-

uous on sphere { as an operator *) in E.

We shall demote by x n(s) the characteristic function of the above- /

constructed set DJn

-4 when se Dy,

s ——
o) = 0 when SE Din.

G=1,....,n)

Let E_ be the linear envelope of functions x;, (j = 1,..,, n). Obviously
E, is a closed subspace in E. Let us 1ntrodgxce into En the operator T,
determined on the ba51s 0f Qn = QNEn and acting accordlng to the formula

|
Tnzp = Z{ Z amK(sm,st CJ)}th .<zn = ZnganQn>}
i=1 j=1 \’
From the linear 1ndependence of functions Xin (i =1, ..., n) there follows
the equivalence of system (8.3) to the operator equation
Zn = TnZn (8.18)
in E_. The equivalence is understood in the following sense: vector (Ein»
-» Epp) will be the solution of system (8.3) when and only when element

\
= 2 §5uxm |

=1

will be the solution of equation (8.18).

Let us furthermore introduce the linear operator Pp, which assigns to
each function z(s)eE the function
n f

Pox - 2 a:(s,-n)x,-n./

=1 ’

From (8.12) it follows that P,(E) = E, and Ppz, = z, for 2 €k, | i.e.
P, is a linear operation of proj ection for subSpace Ep; Pp is bounded [|Pafl = 1/
Furthermore, for any function x(s) which is contiuous on [a,b] we have

n

- 00,

max lx(s)—Zx(s,-,,)x,-,,(s) — 0 when B,
ass<b ! P

since according to what has been proven (see (8.13)), when n » «, the
diameters of subset D;, tend toward zero, and sjn € Djn. In other
words, the sequence o% operators P, tends strongly toward the operator
of the intersection of space C into space E.

We shall write equation (8.18) in the form of the perturbed Galerkin
method:

*) The index of the solution x,(t) does not depend upon space E or C. in
which equation (8.1) is investigated.
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z, =P, Tz, + Spnxn (Sn=Tn— pP.T). (8.19)

Operator Sy is continuous and in view of the f1n1te dimensionality of E;, is
ely continuous on Q . For we have
also completely — Z Copsn € .

~~
~
o
~

=1
n

Spzp = Tp2p— — P Tz, = Z { 2 ok (sin, sjm §])

=1  j==A

-S K(sin, s -"1(3))‘13} Yin== 21 { ? K{K(vas.meJ) —K(sin, 5, gJ)]dS}Xln‘*“

=1 = j==i D

42{2%M&mm@ﬂﬁn

=1 j=i

(we used relationships (8.10) and (8.12). Hence *)

Snzn i < (b -— a) max sup IK(sim Siny g]) - K(S,'n, s, ;i) l+
1KY, jsin seD,. .

.+2 |van| max [K(sin,8in G3) |

Ee=t i<i, j<n

as a consequence of (8.11) and ¢8.13) the boundaries and uniform contin-
uity of function K(t,s,u) in the closed domain (8.5) we have

sup "Sn:t""*o when n-—> -
xe-ﬁ-“

We have proved that for the equations (8.1) and (8.19) the conditions
of thedorem 1 have been satisfied (see also the corollary and comment 1 to
it **). In the indicated theorem equation (8.19) or, what is the same,

*) Here and hencgforth we make use of the obvious fact that for a function
|

of the typey"==281“mn, there will be "y"m=‘§ﬁ;lﬂd- In particular,

R _ =
for a function ot the type

Un = Z{ S‘ S "u(’)d‘}xm

fomq J—ID,
we have
bout< mss| 3 § sutes | = mox sum»uwz. § =

1GiGn 1<f.j<n sED |
jmip, r=1D,

== (b—a) max sup |ui;(s)].
IRiiSneg D,

**) The role of space E' continuously inserted into E is played by space C.
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equation (8.18), at sufficiently large values of n have the solutlon X and
lzn — zoll >0 when n + =, But at the same values of n, according to what has
been proved, equation system (8.3) is soluble, and from the inequality

max |Ejn — 20(Sjn) | =11%a = Puzoll < |70 — 2ol (8.20)
1jgn i

there follows the convergence (8.6). The first part of theorem 8 has been
proved.

The existence of partial derivative 0K(¢, s, u) [ 0ul which is con-
tinuous in domain (8.5), leads to the continuous differentiability of oper-
ator T in point x, (as an operator from E into C and even more so as an
oerator in E) and furthermore

S OK(t,s,1(s))

h(s)ds.
220 () ds..

T (z )h

a
This same condition guarantees the differentiability of operator S,

while for p, = }_J NiXin EE,,E and . 5 E—dn“ we have
Pt | vl

5 i ] ny Siny 0K iny S ;
s upia = B{ 3§ [R5 - Pt T

" ou .
{ .

+Z { 2! JnaK(stfg sina %)) }Xm

=4 =1

Hence, utilizing the uniform continuity of 90K(?, s u)/0u in the
closed domain (8.5) as above, we find that

sup [|Sn’(x)||——> 0 when -—»oo“

e,
Also taking into consideration the hypothe51s of only a 0 solution (8.7)
(equations h = T'(xp)h), we can certify that all conditions of theorem 5
have been satisfied and even more so those of theorem 3. According to
theorem 3, the solution xn of equation (8.1%9) with sufficiently large
values of n is unique in sphere [z — 2] << 8o/ of sufficiently small
radius §,, and this is equivalent to confirhation of the theorem being
proven concerning the local uniqueness of the solution of system (8.3).

Evaluation of (8.8) proceeds from (5.13) and equality (8.2Q)¢it is
necessary only to note that HPnTmo-Tnandl==rn;where T, is a number deter-
mined by relationships (8.9).

Theorem 8 has been fully proven.

Remark. On the basis of solution &;,,..., &, of the system (8.3), an
analytical approximation can be constituted by various methods. It is most
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convenient to assume
» |
Ea(t)= D)} ainK(t, 33, Esn)y
P Jmt _ 0

since compilation of this function does not require additional calculations.
It can be easily seen that under the conditions of the second part of theor-
em 8, estimate

max |Fa () — 2o(0)| < c[Ralz]s 2e(s) = Kt 8, 24(s))-

agt<b
is valid.
Theorem 8 can without difficulty be generalized into equation /749
/. ¢ e -
cz) =4, § Kit,5,2())ds,..., § o (tr5,2(5) ) ds ), (8.21)
[} a
where f(t, 2y, .... zp) and Kj(t,s,u) (i =1, ..., m) are continuous for the

set of the variable function; an analog of system (8.3) has the form of

n n
Ein=f (sim Eajnlr‘: (sin, Sine E,jn):- vy ZajnK (sin,_ Siny gjn) ),‘
j=1 =1 I
(i=1,....n). ‘

Boundary value problems for conventional differential equations may be re-
duced to equations of the type (8.21).

Let D be a closed domain in an m-dimensional Euclidian space, t = (tj,
ceestp ), s = (s1,...,85) . Let us assume that each node Sjn of "quadrature"
formula

S z(s)ds = Za,-,-.z(s,-n)+ Ry (2) (ajn=>0; sjn € D);

D =1

may be included into the measurable subset Djnf: D in such a manner that con-
ditions which are analogous to (8.12):
n

n |

UDjn=D, Diu(Din=62 when i7*j, mesDj, =(meSD / 2 05n> Ujns *

j==1 . . i=1 ‘
would be satisfied, and furthermore this being the most important of all,
subsets D.  tend toward zero. Then theorem 8 and its proof are transferred,
without stbstantial changes, to the equation

z(ty=  K(t,5,2(s))ds.

D

The question remains open whether a subdivision of D into subsets Djn, which
possesses the enumerated properties, always exists for a converging quadra-
ture process.
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Let us finally indicate some bobliographical references. The conver-
gence of the method of mechanical quadratures (8.3) for the nonlinear equa-
tion (8.1) in the case of Gauss interpolation formula was established in [6].
In [7] (also [8]) a posteriori error estimates have been derived in the case
of an arbitrary quadrature formula; the question of convergence was not
investigated- 1In the quoted works, continuity together with the first and
second derivative with respect to u is required from kernel K(t,s,u). The-
orem 8 apparently contains new results also in the case of a linear equa-
tion (the case of K(t,s,u) = G(t,s}u + £(t)/(b - a)). For a bibliography
of works, concerning the method of mechanical quadrature for linear equa-
tions, see [9] and also [1], [2].

T 9. Application to More General Types of Equations

By means of substitution of the desired elements, the results of the
previous paragraphs can be transferred to equations with unbounded operators.
Let us consider the equality

Au = Bu (9.1)

where A is a linear (generally speaking unbounded) operator and B is a non-
linear operator from Banach space €/ into Banach space E. Let the domain
of determination D(A) of operator A be dense in €/ , and let the domain of
determination D(B) of nonlinear operator B be in an open subspace A < €,
and furthermore

D(4)N A<= D(B). (9.2)

It is, in addltlon assumed that operator A is invertible and the inverse
operator A-1 is bounded and determined on the entire space E.

In applications, cases often occur in which, although operator A7l
is bounded, it is determined only on a dense set in E. If in addition it
is also known that A permits closure of A, then operator A will already
satisfy the established condition, i.e. A has a bounded inverse operator,
defined on all of E. Therefore, we assume that the closure of operator A
has already been effected .

It should be kept in mind that with the closure of operator A, inclu-
sion (9.2) can be violated, and in such a case, simultaneously with the
closure of A it is necessary somehow to expand operator B.

Let {E } be a sequence of closed subspaces in E, let Pn be a linear
operator of projection onto subspace E;. Let us denote

C.=AE,) (€, <€ n=1,2,...).

As approximate solutions of equation (9.1) are adopted the solutions of
equation
Au, = P;Bu, 4 Cru,,

(9.3)

where C, is, generally speaking, a nonlinear operator from €+ into E
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determined on the set An=A4ANCs Operators A and P,B in equation
(9.3) also act from§, into Ej.

The substitution
X = Au (9.4)
reduces equation (9.1) to the equation
x=Tx (T = BA™D) (9.5)

in space E, and reduces equations (9.3) to the equations

‘ ) ' l 9.6
Zp == PuTtn+Suzn  (T=BA™Y  Sn=CuA~) o (9.6)

in subspace En.  The domain of determination of operator T = BA™! is open

in set E ( see (9.2))
Q=(z:zeE, A4z A),)

|
and the domain of determination of operator S, = C_A™! is set Qo =QNEn)
Let the domain of determination of operator P, T also be Q, i.e. let set T(Q)
enter into the domain of determination of operator Py.

After these remarks, the results of the preceding sections are directly /751
transferred to equations (9.5) and (9.6), and at the same time also to equa-
tions (9.1) and (9.2), which are equivalent to them. We do not cite the
formulations due to their obviousness. It can be shown that in the case of
linear equations, substitution (9.4) leads to the same results as does the
method, different in form, of reduction to the equations of the IT kind,
which was used in [1], [2]. '

The author is sincerely greatful for a series of useful comments by M.
A. Krasnosel'skiy.
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